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Abstract

We study the strip packing problem, a classical packing problem which generalizes both bin pack-

ing and makespan minimization. Here we are given a set of axis-parallel rectangles in the two-

dimensional plane and the goal is to pack them in a vertical strip of �xed width such that the

height of the obtained packing is minimized. The packing must be non-overlapping and the rect-

angles cannot be rotated.

A reduction from the partition problem shows that no approximation better than 3/2 is possible

for strip packing in polynomial time (assuming P6=NP). Nadiradze and Wiese [SODA16] overcame

this barrier by presenting a ( 75 + ε)-approximation algorithm in pseudo-polynomial-time (PPT).

As the problem is strongly NP-hard, it does not admit an exact PPT algorithm (though a PPT

approximation scheme might exist).

In this paper we make further progress on the PPT approximability of strip packing, by pre-

senting a ( 43 + ε)-approximation algorithm. Our result is based on a non-trivial repacking of some

rectangles in the empty space left by the construction by Nadiradze and Wiese, and in some sense

pushes their approach to its limit.

Our PPT algorithm can be adapted to the case where we are allowed to rotate the rectangles

by 90◦, achieving the same approximation factor and breaking the polynomial-time approximation

barrier of 3/2 for the case with rotations as well.

1998 ACM Subject Classi�cation F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases approximation algorithms, strip packing, rectangle packing, cutting-stock

problem.
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1 Introduction

In this paper, we consider the strip packing problem, a well-studied classical two-dimensional

packing problem [6, 14, 28]. Here we are given a collection of rectangles, and an in�nite

vertical strip of widthW in the two dimensional (2-D) plane. We need to �nd an axis-parallel

embedding of the rectangles without rotations inside the strip so that no two rectangles

overlap (feasible packing). Our goal is to minimize the total height of this packing.

More formally, we are given a parameter W ∈ N and a set R = {R1, . . . , Rn} of rectan-
gles, each one characterized by a width wi ∈ N, wi ≤ W , and a height hi ∈ N. A packing

of R is a pair (xi, yi) ∈ N × N for each Ri, with 0 ≤ xi ≤ W − wi, meaning that the

left-bottom corner of Ri is placed in position (xi, yi) and its right-top corner in position
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(xi + wi, yi + hi). This packing is feasible if the interior of rectangles is disjoint in this

embedding (or equivalently rectangles are allowed to overlap on their boundary only). Our

goal is to �nd a feasible packing of minimum height maxi{yi + hi}.
Strip packing is a natural generalization of one-dimensional bin packing [13] (when all the

rectangles have the same height) and makespan minimization [12] (when all the rectangles

have the same width). The problem has lots of applications in industrial engineering and

computer science, specially in cutting stock, logistics and scheduling [28, 20]. Recently, there

have been a lot of applications of strip packing in electricity allocation and peak demand

reductions in smart-grids [36, 27, 32].

A simple reduction from the partition problem shows that the problem cannot be approx-

imated within a factor 3
2 − ε for any ε > 0 in polynomial-time unless P=NP. This reduction

relies on exponentially large (in n) rectangle widths.

Let OPT = OPT (R) denote the optimal height for the considered strip packing instance

(R,W ), and hmax = hmax(R) (resp. wmax = wmax(R)) be the largest height (resp. width)

of any rectangle in R. Observe that trivially OPT ≥ hmax. W.l.o.g. we can assume that

W ≤ nwmax. The �rst non-trivial approximation algorithm for strip packing, with approx-

imation ratio 3, was given by Baker, Co�man and Rivest [6]. The First-Fit-Decreasing-

Height algorithm (FFDH) by Co�man et al. [14] gives a 2.7 approximation. Sleator [34]

gave an algorithm that generates packing of height 2OPT + hmax

2 , hence achieving a 2.5

approximation. Afterwards, Steinberg [35] and Schiermeyer [33] independently improved

the approximation ratio to 2. Harren and van Stee [21] �rst broke the barrier of 2 with their

1.9396 approximation. The present best ( 5
3 + ε)-approximation is due to Harren et al. [20].

Nadiradze and Wiese [31] overcame the 3
2 -inapproximability barrier by presenting a ( 7

5 +

ε)-approximation algorithm running in pseudo-polynomial-time (PPT). More speci�cally,

the running time of their algorithm is O((Nn)O(1)), where N = max{wmax, hmax}1. As

strip packing is strongly NP-hard [17], it does not admit an exact PPT algorithm. However,

the existence of a PPT approximation scheme is currently not excluded.

1.1 Our contribution and techniques

In this paper, we make progress on the PPT approximability of strip packing, by presenting

an improved ( 4
3 + ε) approximation. Our approach re�nes the technique of Nadiradze and

Wiese [31], that modulo several technical details works as follows. Let α ∈ [1/3, 1/2) be

a proper constant parameter, and de�ne a rectangle Ri to be tall if hi > α · OPT . They

prove that the optimal packing can be structured into a constant number of axis-aligned

rectangular regions (boxes), that occupy a total height of OPT ′ ≤ (1 + ε)OPT inside the

vertical strip. Some rectangles are not fully contained into one box (they are cut by some

box). Among them, tall rectangles remain in their original position. All the other cut

rectangles are repacked on top of the boxes: part of them in a horizontal box of size W ×
O(ε)OPT , and the remaining ones in a vertical box of size O(εW )× αOPT (that we next

imagine as placed on the top-left of the packing under construction).

Some of these boxes contain only relatively high rectangles (including tall ones) of rel-

atively small width. The next step is a rearrangement of the rectangles inside one such

vertical box B (see Figure 3a), say of size w × h: they �rst slice non-tall rectangles into

unit width rectangles (this slicing can be �nally avoided with standard techniques). Then

1 For the case without rotations, the polynomial dependence on hmax can indeed be removed with standard
techniques.
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Here γ is a small constant depending on ε.

Figure 1 Comparison of �nal solutions.

they shift tall rectangles to the top/bottom of B, shifting sliced rectangles consequently (see

Figure 3b). Now they discard all the (sliced) rectangles completely contained in a central

horizontal region of size w×(1+ε−2α)h, and they nicely rearrange the remaining rectangles

into a constant number of sub-boxes (excluding possibly a few more non-tall rectangles, that

can be placed in the additional vertical box).

These discarded rectangles can be packed into 2 extra boxes of size w
2 × (1 + ε − 2α)h

(see Figure 3d). In turn, the latter boxes can be packed into two discarded boxes of size
W
2 × (1 + ε − 2α)OPT ′, that we can imagine as placed, one on top of the other, on the

top-right of the packing. See Figure 1a for an illustration of the �nal packing. This leads

to a total height of (1 + max{α, 2(1− 2α)}+O(ε)) ·OPT , which is minimized by choosing

α = 2
5 .

Our main technical contribution is a repacking lemma that allows one to repack a small

fraction of the discarded rectangles of a given box inside the free space left by the corre-

sponding sub-boxes (while still having Oε(1) many sub-boxes in total). This is illustrated

in Figure 3e. This way we can pack all the discarded rectangles into a single discarded box

of size (1− γ)W × (1 + ε− 2α)OPT ′, where γ is a small constant depending on ε, that we

can place on the top-right of the packing. The vertical box where the remaining rectangles

are packed still �ts to the top-left of the packing, next to the discarded box. See Figure 1b

for an illustration. Choosing α = 1/3 gives the claimed approximation factor.

We remark that the basic approach by Nadiradze and Wiese strictly requires that at

most 2 tall rectangles can be packed one on top of the other in the optimal packing, hence

imposing α ≥ 1/3. Thus in some sense we pushed their approach to its limit.

FSTTCS 2016
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The algorithm by Nadiradze and Wiese [31] is not directly applicable to the case when

90◦ rotations are allowed. In particular, they use a linear program to pack some rectangles.

When rotations are allowed, it is unclear how to decide which rectangles are packed by

the linear program. We use a combinatorial container -based approach to circumvent this

limitation, which allows us to pack all the rectangles using dynamic programming. This way

we achieve a PPT (4/3 + ε)-approximation for strip packing with rotations, breaking the

polynomial-time approximation barrier of 3/2 for that variant as well.

1.2 Related work

For packing problems, many pathological lower bound instances occur when OPT is small.

Thus it is often insightful to consider the asymptotic approximation ratio. Co�man et

al. [14] described two level-oriented algorithms, Next-Fit-Decreasing-Height (NFDH) and

First-Fit-Decreasing-Height (FFDH), that achieve asymptotic approximations of 2 and 1.7,

respectively. After a sequence of improvements [18, 5], the seminal work of Kenyon and

Rémila [28] provided an asymptotic polynomial-time approximation scheme (APTAS) with

an additive term O
(
hmax

ε2

)
. The latter additive term was subsequently improved to hmax

by Jansen and Solis-Oba [24].

In the variant of strip packing with rotations, we are allowed to rotate the input rectangles

by 90◦ (in other terms, we are free to swap the width and height of an input rectangle). The

case with rotations is much less studied in the literature. It seems that most techniques that

work for the case without rotations can be extended to the case with rotations, however this

is not always a trivial task. In particular, it is not hard to achieve a 2+ε approximation, and

the 3/2 hardness of approximation extends to this case as well [24]. In terms of asymptotic

approximation, Miyazawa and Wakabayashi [30] gave an algorithm with asymptotic perfor-

mance ratio of 1.613. Later, Epstein and van Stee [16] gave a 3
2 asymptotic approximation.

Finally, Jansen and van Stee [25] achieved an APTAS for the case with rotations.

Strip packing has also been well studied for higher dimensions. The present best asymp-

totic approximation for 3-D strip packing is due to Jansen and Prädel [23] who gave 1.5-

approximation extending techniques from 2-D bin packing.

There are many other related geometric packing problems. For example, in the indepen-

dent set of rectangles problems we are given a collection of axis-parallel rectangles embedded

in the plane, and we need to �nd a maximum cardinality/weight subset of non-overlapping

rectangles [1, 10, 11]. Interesting connections between this problems and unsplittable �ow on

a path were recently discovered [3, 4, 7, 9, 19]. In the geometric knapsack problem we wish

to pack a maximum cardinality/pro�t subset of the rectangles in a given square knapsack

[2, 26]. One can also consider a natural geometric version of bin packing, where one needs

to pack a given set of rectangles in the smallest possible number of square bins [8]. We refer

the readers to [29] for a survey on geometric packing problems.

1.3 Organization of the paper

First, we discuss some preliminaries and notations in Section 2. Section 3 contains our main

technical contribution, our repacking lemma. There we also discuss a re�ned structural result

leading to a packing into Oε(1) many containers. In Section 4, we describe our algorithm to

pack the rectangles. Then in Section 5, we extend our algorithm to the case with rotations.

Finally, in Section 6, we conclude with some observations.

Due to space constraints, some proofs are omitted from this extended abstract and will

appear in the full version of the paper.
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Figure 2 Illustration of some of the de�nitions used in this paper.

2 Preliminaries and notations

Throughout the present work, we will follow the notation from [31], which will be explained

as it is needed.

Recall that OPT ∈ N denotes the height of the optimal packing for instance R. By

trying all the pseudo-polynomially many possibilities, we can assume that OPT is known

to the algorithm. Given a set M ⊆ R of rectangles, a(M) will denote the total area of

rectangles inM, i.e., a(M) =
∑
Ri∈M hi · wi, and hmax(M) (resp. wmax(M)) denotes the

maximum height (resp. width) of rectangles in M. Throughout this work, a box of size

a× b means an axis-aligned rectangular region of width a and height b.

In order to lighten the notation, we sometimes interpret a rectangle/box as the corre-

sponding region inside the strip according to some given embedding. The latter embedding

will not be speci�ed when clear from the context. Similarly, we sometimes describe an

embedding of some rectangles inside a box, and then embed the box inside the strip: the

embedding of the considered rectangles is shifted consequently in that case.

A vertical (resp. horizontal) container is an axis-aligned rectangular region where we

implicitly assume that rectangles are packed one next to the other from left to right (resp.,

bottom to top), i.e., any vertical (resp. horizontal) line intersects only one packed rectangle

(see Figure 2b). Container-like packings will turn out to be particularly useful since they

naturally induce a (one-dimensional) knapsack instance.

2.1 Classi�cation of rectangles

Let 0 < ε < α, and assume for simplicity that 1
ε ∈ N. We �rst classify the input rectangles

into six groups according to parameters δh, δw, µh, µw satisfying ε ≥ δh > µh > 0 and

ε ≥ δw > µw > 0, whose values will be chosen later (see also Figure 2a). A rectangle Ri is

Large if hi ≥ δhOPT and wi ≥ δwW .

Tall if hi > αOPT and wi < δwW .

Vertical if hi ∈ [δhOPT, αOPT ] and wi ≤ µwW ,

FSTTCS 2016
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Horizontal if hi ≤ µhOPT and wi ≥ δwW ,

Small if hi ≤ µhOPT and wi ≤ µwW ;

Medium in all the remaining cases, i.e., if hi ∈ (µhOPT, δhOPT ), or wi ∈ (µwW, δwW )

and hi ≤ αOPT .
We use L, T , V , H, S, and M to denote large, tall, vertical, horizontal, small, and medium

rectangles, respectively. We remark that, di�erently from [31], we need to allow δh 6= δw
and µh 6= µw due to some additional constraints in our construction (See Section 4).

Notice that according to this classi�cation, every vertical line across the optimal packing

intersects at most two tall rectangles. The following lemma allows us to choose δh, δw, µh
and µw in such a way that δh and µh (δw and µw, respectively) di�er by a large factor, and

medium rectangles have small total area.

I Lemma 1. Given a polynomial-time computable function f : (0, 1)→ (0, 1), with f(x) < x,

any constant ε ∈ (0, 1), and any positive integer k, we can compute in polynomial time a set

∆ of T = 2( 1
ε )k many positive real numbers upper bounded by ε, such that there is at least

one number δh ∈ ∆ so that a(M) ≤ εk · OPT ·W by choosing µh = f(δh), µw = εµh

12 , and

δw = εδh
12 .

Function f and constant k will be chosen later. From now on, assume that δh, δw, µh
and µw are chosen according to Lemma 1.

2.2 Overview of the algorithm

We next overview some of the basic results in [31] that are needed in our result. We de�ne

the constant γ := εδh
2 , and w.l.o.g. assume γ ·OPT ∈ N.

Let us forget for a moment small rectangles S. We will pack all the remaining rectangles

L ∪ H ∪ T ∪ V ∪ M into a su�ciently small number of boxes embedded into the strip.

By standard techniques, as in [31], it is then possible to pack S (essentially using NFDH

in a proper grid de�ned by the above boxes) while increasing the total height at most by

O(ε)OPT . See Section 4.1 for more details on packing of small rectangles.

The following lemma from [31] allows one to round the heights and positions of rectangles

of large enough height, without increasing much the height of the packing.

I Lemma 2. [31] There exists a feasible packing of height OPT ′ ≤ (1 + ε)OPT where: (1)

the height of each rectangles in L ∪ T ∪ V is rounded up to the closest integer multiple of

γ · OPT and (2) their x-coordinates are as in the optimal solution and their y-coordinates

are integer multiples of γ ·OPT .

We next focus on rounded rectangle heights (i.e., implicitly replace L ∪ T ∪ V by their

rounded version) and on this slightly suboptimal solution of height OPT ′.

The following lemma helps us to pack rectangles in M .

I Lemma 3. If k in Lemma 1 is chosen su�ciently large, all the rectangles in M can be

packed in polynomial time into a box BM,hor of size W ×O(ε)OPT and a box BM,ver of size

(γ3W ) × (αOPT ). Furthermore, there is one such packing using 3ε
µh

vertical containers in

BM,hor and γ
3µw

horizontal containers in BM,ver.

We say that a rectangle Ri is cut by a box B if both Ri \ B and B \ Ri are non-empty

(considering both Ri and B as open regions with an implicit embedding on the plane). We

say that a rectangle Ri ∈ H (resp. Ri ∈ T ∪ V ) is nicely cut by a box B if Ri is cut by B

and their intersection is a rectangular region of width wi (resp. height hi). Intuitively, this

means that an edge of B cuts Ri along its longest side (see Figure 2c).
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Now it remains to pack L ∪H ∪ T ∪ V : The following lemma, taken from [31] modulo

minor technical adaptations, describes an almost optimal packing of those rectangles.

I Lemma 4. There is an integer KB = ( 1
ε )( 1

δw
)O(1) such that, assuming µh ≤ εδw

KB
, there is

a partition of the region BOPT ′ := [0,W ]× [0, OPT ′] into a set B of at most KB boxes and

a packing of the rectangles in L ∪ T ∪ V ∪H such that:

each box has size equal to the size of some Ri ∈ L ( large box), or has height at most

δhOPT
′ (horizontal box), or has width at most δwW ( vertical box);

each Ri ∈ L is contained into a large box of the same size;

each Ri ∈ H is contained into a horizontal box or is cut by some box. Furthermore, the

total area of horizontal cut rectangles is at most W ·O(ε)OPT ′;

each Ri ∈ T ∪ V is contained into a vertical box or is nicely cut by some vertical box.

We denote the sets of vertical, horizontal, and large boxes by BV ,BH and BL, respectively.
Observe that B can be guessed in PPT. We next use Tcut ⊆ T and Vcut ⊆ V to denote tall

and vertical cut rectangles in the above lemma, respectively. Let us also de�ne Tbox = T \Tcut
and Vbox = V \ Vcut.

Using standard techniques (see e.g. [31]), we can pack all the rectangles excluding the

ones contained in vertical boxes in a convenient manner. This is summarized in the following

lemma.

I Lemma 5. Given B as in Lemma 4 and assuming µw ≤ γδh
6KB(1+ε) , there exists a packing

of L ∪H ∪ T ∪ V such that:

1. all the rectangles in L are packed in BL;
2. all the rectangles in H are packed in BH plus an additional box BH,cut of size W ×

O(ε)OPT ;

3. all the rectangles in Tcut ∪ Tbox ∪ Vbox are packed as in Lemma 4;

4. all the rectangles in Vcut are packed in an additional vertical box BV,cut of size (γ3W )×
(αOPT ).

We will pack all the rectangles (essentially) as in [31], with the exception of Tbox ∪ Vbox
where we exploit a re�ned approach. This is the technical heart of this paper, and it is

discussed in the next section.

3 A repacking lemma

We next describe how to pack rectangles in Tbox∪Vbox. In order to highlight our contribution,
we �rst describe how the approach by Nadiradze and Wiese [31] works.

It is convenient to assume that all the rectangles in Vbox are sliced vertically into sub-

rectangles of width 1 each2. Let Vsliced be such sliced rectangles. We will show how to

pack all the rectangles in Tbox∪Vsliced into a constant number of sub-boxes. Using standard
techniques it is then possible to pack Vbox into the space occupied by Vsliced plus an additional

box BV,round of size (γ3W )× αOPT .
We next focus on a speci�c vertical box B, say of size w × h (see Figure 3a). Let T cut

be the tall rectangles cut by B. Observe that there are at most 4 such rectangles (2 on the

left/right side of B). The rectangles in T cut are packed as in Lemma 5. Let also T and V be

the tall rectangles and sliced vertical rectangles, respectively, originally packed completely

inside B.

2 For technical reasons, slices have width 1/2 in [31]. For our algorithm, slices of width 1 su�ce.

FSTTCS 2016
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They show that it is possible to pack T ∪ V into a constant size set S of sub-boxes

contained inside B−T cut, plus an additional box D of size w× (1+ε−2α)h. Here B−T cut
denotes the region inside B not contained in T cut. In more detail, they start by considering

each rectangle Ri ∈ T . Since α ≥ 1
3 by assumption, one of the regions above or below Ri

cannot contain another tall rectangle in T , say the �rst case applies (the other one being

symmetric). Then we move Ri up so that its top side overlaps with the top side of B. The

sliced rectangles in V that are covered this way are shifted right below R (note that there is

enough free space by construction). At the end of the process all the rectangles in T touch

at least one of the top and bottom side of B (see Figure 3b). Note that no rectangle is

discarded up to this point.

Next, we partition the space inside B−(T ∪T cut) into maximal height unit-width vertical

stripes. We call each such stripe a free rectangle if both its top and bottom side overlap

with the top or bottom side of some rectangle in T ∪T cut, and otherwise a pseudo rectangle

(see Figure 3c). We de�ne the i-th free rectangle to be the free rectangle contained in stripe

[i− 1, i]× [0, h].

Note that all the free rectangles are contained in a horizontal region of width w and

height at most h − 2αOPT ≤ h − 2αOPT
′

1+ε ≤ h(1 − 2α
1+ε ) ≤ h(1 + ε − 2α) contained in the

central part of B. Let V disc be the set of (sliced vertical) rectangles contained in the free

rectangles. Rectangles in V disc can be obviously packed inside D. For each corner Q of

the box B, we consider the maximal rectangular region that has Q as a corner and only

contains pseudo rectangles whose top/bottom side overlaps with the bottom/top side of a

rectangle in T cut; there are at most 4 such non-empty regions, and for each of them we

de�ne a corner sub-box, and we call the set of such sub-boxes Bcorn (see Figure 3c). The

�nal step of the algorithm is to rearrange horizontally the pseudo/tall rectangles so that

pseudo/tall rectangles of the same height are grouped together as much as possible (modulo

some technical details). The rectangles in Bcorn are not moved. The sub-boxes are induced

by maximal consecutive subsets of pseudo/tall rectangles of the same height touching the

top (resp., bottom) side of B (see Figure 3d). We crucially remark that, by construction,

the height of each sub-box (and of B) is a multiple of γOPT .

By splitting each discarded box D into two halves Bdisc,top and Bdisc,bot, and replicating

the packing of boxes inside BOPT ′ , it is possible to pack all the discarded boxes into two

boxes Bdisc,top and Bdisc,bot, both of size W
2 × (1 + ε− 2α)OPT ′.

A feasible packing of boxes (and hence of the associated rectangles) of height (1 +

max{α, 2(1 − 2α)} + O(ε))OPT is then obtained as follows. We �rst pack BOPT ′ at the

base of the strip, and then on top of it we pack BM,hor, two additional boxes BH,round and

BH,cut (which will be used to repack the horizontal items), and a box BS (which will be

used to pack some of the small items). The latter 4 boxes all have width W and height

O(εOPT ′). On the top right of this packing we place Bdisc,top and Bdisc,bot, one on top of

the other. Finally, we pack BM,ver, BV,cut and BV,round on the top left, one next to the

other. See Figure 1a for an illustration. The height is minimized for α = 2
5 , leading to a

7/5 +O(ε) approximation.

The main technical contribution of this paper is to show how it is possible to repack

a subset of V disc into the free space inside Bcut := B − T cut not occupied by sub-boxes,

so that the residual sliced rectangles can be packed into a single discarded box Bdisc of

size (1 − γ)w × (1 + ε − 2α)h (repacking lemma). See Figure 3e. This apparently minor

saving is indeed crucial: with the same approach as above all the discarded sub-boxes Bdisc
can be packed into a single discarded box Bdisc of size (1 − γ)W × (1 + ε − 2α)OPT ′.

Therefore, we can pack all the previous boxes as before, and Bdisc on the top right. Indeed,
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free rectangles, and dashed regions

correspond to corner sub-boxes.

1
2
w

(1
+
ε
−

2α
)h

(1
+
ε
−

2α
)h

Bdisc,bot

Bdisc,top

(d) Rearrangement of pseudo and tall rectangles

to get Oε(1) sub-boxes, and additional packing

of V disc as in [31].

≥ γw
good indexes

≤ (1− γ)w

(1
+
ε
−

2α
)
hBdisc

(e) Our re�ned repacking of V disc according to

Lemma 6: some vertical slices are repacked in

the free space.

Figure 3 Creation of pseudo rectangles, how to get constant number of sub-boxes and repacking

of vertical slices in a vertical box B.

the total width of BM,ver, BV,cut and BV,round is at most γW for a proper choice of the

parameters. See Figure 1b for an illustration. Altogether the resulting packing has height

(1 + max{α, 1 − 2α} + O(ε))OPT . This is minimized for α = 1
3 , leading to the claimed

4/3 +O(ε) approximation.

It remains to prove our repacking lemma.

I Lemma 6 (Repacking Lemma). Consider a partition of D into w unit-width vertical stripes.

There is a subset of at least γw such stripes so that the corresponding sliced vertical rectangles

V repack can be repacked inside Bcut = B − T cut in the space not occupied by sub-boxes.

Proof. Let f(i) denote the height of the i-th free rectangle, where for notational convenience

we introduce a degenerate free rectangle of height f(i) = 0 whenever the stripe [i − 1, i] ×
[0, h] inside B does not contain any free rectangle. This way we have precisely w free

rectangles. We remark that free rectangles are de�ned before the horizontal rearrangement

of tall/pseudo rectangles, and the consequent de�nition of sub-boxes.

Recall that sub-boxes contain tall and pseudo rectangles. Now consider the area in

Bcut not occupied by sub-boxes. Note that this area is contained in the central region of
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height h(1 − 2α
1+ε ). Partition this area into maximal-height unit-width vertical stripes as

before (newly free rectangles). Let g(i) be the height of the i-th newly free rectangle, where

again we let g(i) = 0 if the stripe [i − 1, i] × [0, h] does not contain any (positive area)

free region. Note that, since tall and pseudo rectangles are only shifted horizontally in the

rearrangement, it must be the case that:

w∑
i=1

f(i) =
w∑
i=1

g(i).

Let G be the (good) indexes where g(i) ≥ f(i), and G = {1, . . . , w} −G be the bad indexes

with g(i) < f(i). Observe that for each i ∈ G, it is possible to pack the i-th free rectangle

inside the i-th newly free rectangle, therefore freeing a unit-width vertical strip inside D.

Thus it is su�cient to show that |G| ≥ γw.
Observe that, for i ∈ G, f(i)−g(i) ≥ γOPT ≥ γ h

1+ε : indeed, both f(i) and g(i) must be

multiples of γOPT since they correspond to the height of B minus the height of one or two

tall/pseudo rectangles. On the other hand, for any index i, g(i)− f(i) ≤ g(i) ≤ (1− 2α
1+ε )h,

by the de�nition of g. Altogether

(1− 2α

1 + ε
)h · |G| ≥

∑
i∈G

(g(i)− f(i)) =
∑
i∈G

(f(i)− g(i)) ≥ γh

1 + ε
· |G| = γh

1 + ε
· (w − |G|)

We conclude that |G| ≥ γ
1+ε−2α+γw. The claim follows since by assumption α > ε ≥ γ. J

The original algorithm in [31] use standard LP-based techniques, as in [28], to pack the

horizontal rectangles. We can avoid that via a re�ned structural lemma: here boxes and

sub-boxes are further partitioned into vertical (resp., horizontal) containers. Rectangles are

then packed into such containers as mentioned earlier: one next to the other from left to right

(resp., bottom to top). Containers de�ne a multiple knapsack instance, that can be solved

optimally in PPT via dynamic programming. This approach has two main advantages:

It leads to a simpler algorithm.

It can be easily adapted to the case with rotations, as discussed in Section 5.

We omit the proof of the following Lemma.

I Lemma 7. By choosing α = 1/3, there is an integer KF ≤
(

1
εδw

)O(1/(δwε))

such that,

assuming µh ≤ ε
KF

and µw ≤ γ
3KF

, there is a packing of R\S in the region [0,W ]×[0, (4/3+

O(ε))OPT ′] with the following properties:

All the rectangles in R \ S are contained in KTOTAL = Oε(1) horizontal or vertical

containers, such that each of these containers is either contained in or disjoint from

BOPT ′ ;

At most KF containers are contained in BOPT ′ , and their total area is at most a(R\S).

4 A re�ned algorithm

First of all, we �nd µh, δh, µw, δw as required by Lemma 1; this way, we can �nd the set S of

small rectangles. Consider the packing of Lemma 7: all the non-small rectangles are packed

into KTOTAL = Oε(1) containers, and only KF of them are contained in BOPT ′ . Since their

position (x, y) and their size (w, h) are w.l.o.g. contained in {0, . . . ,W}×{0, . . . , nhmax}, we
can enumerate in PPT over all the possible feasible such packings of k ≤ KTOTAL containers,

and one of those will coincide with the packing de�ned by Lemma 7.
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Containers naturally induce a multiple knapsack problem: for each horizontal container

Cj of size wCj
× hCj

, we create a (one-dimensional) knapsack j of size hCj
. Furthermore,

we de�ne the size b(i, j) of rectangle Ri w.r.t. knapsack j as hi if hi ≤ hCj
and wi ≤ wCj

.

Otherwise b(i, j) = +∞ (meaning that Ri does not �t in Cj). The construction for vertical

containers is symmetric. This multiple knapsack problem can be easily solved optimally

(hence packing all the rectangles) in PPT via dynamic programming.

Note that unlike [31], we do not use linear programming to pack horizontal rectangles,

which will be crucial when we extend our approach to the case with rotations.

4.1 Packing the small rectangles

It remains to pack the small rectangles S. We will pack them in the free space left by

containers inside [0,W ]×[0, OPT ′] plus an additional box BS of small height as the following

lemma states. By placing box BS on top of the remaining packed rectangles, the �nal height

of the solution increases only by ε ·OPT ′.

I Lemma 8. Assuming µh ≤ 1
31K2

F
, it is possible to pack in polynomial time all the rectangles

in S into the area [0,W ] × [0, OPT ′] not occupied by containers plus an additional box BS
of size W × εOPT ′.

Proof. We �rst extend the sides of the containers inside [0,W ] × [0, OPT ′] in order to

de�ne a grid. This procedure partitions the free space in [0,W ]× [0, OPT ′] into a constant

number of rectangular regions (at most (2KF + 1)
2 ≤ 5K2

F many) whose total area is at

least a(S) thanks to Lemma 7. Let Bsmall be the set of such rectangular regions with width

at least µwW and height at least µhOPT (notice that the total area of rectangular regions

not in Bsmall is at most 5K2
Fµwµh ·W · OPT ). We now use NFDH to pack a subset of S

into the regions in Bsmall. By standard properties of NFDH, since each region in Bsmall
has size at most W × OPT ′ and each item in S has width at most µwW and height at

most µhOPT , the total area of the unpacked rectangles from S can be bounded above by

5K2
F ·
(
µwµhWOPT + µhOPT ·W + µwW · OPT ′

)
≤ 15K2

Fµh · OPT ′ ·W . Therefore we

can pack the latter small rectangles with NFDH in an additional box BS of width W and

height µhOPT + 30K2
FµhOPT

′ ≤ ε ·OPT ′ provided that µh ≤ 1
31K2

F
. J

The (rather technical) details on how to choose f and k (and consequently the actual

values of µh, δw, and µw) will be discussed in the full version of this paper. We next

summarize the constraints that arise from the analysis:

• µw = εµh
12

and δw = εδh
12

(Lemma 1), • µw ≤ γ δh
6KB(1+ε)

(Lemma 5),

• γ = εδh
2

(Lemma 2), • µw ≤ γ
3KF

(Lemma 7),

• 6εk ≤ γ
6
(Lemma 3) • µh ≤ ε

KF
(Lemma 7),

• µh ≤ εδw
KB

(Lemma 4), • µh ≤ 1
31K2

F
(Lemma 8)

It is not di�cult to see that all the constraints are satis�ed by choosing f(x) = (εx)C/(εx)

for a large enough constant C and k =
⌈
logε

(
γ
36

)⌉
. Finally we achieve the claimed result.

I Theorem 9. There is a PPT ( 4
3 + ε)-approximation algorithm for strip packing.

5 Extension to the case with rotations

In this section, we brie�y explain the changes needed in the above algorithm for the case

with rotations.

FSTTCS 2016



XX:12 Improved Pseudo-Polynomial-Time Approximation for Strip Packing

We �rst observe that, by considering the rotation of rectangles as in the optimum so-

lution, Lemma 7 still applies (for a proper choice of the parameters, that can be guessed).

Therefore we can de�ne a multiple knapsack instance, where knapsack sizes are de�ned as

before. Some extra care is needed to de�ne the size b(i, j) of rectangle Ri into a container

Cj of size wCj
× hCj

. Assume Cj is horizontal, the other case being symmetric. If rect-

angle Ri �ts in Cj both rotated and non-rotated, then we set b(i, j) = min{wi, hi} (this
dominates the size occupied in the knapsack by the optimal rotation of Ri). If Ri �ts in Cj
only non-rotated (resp., rotated), we set b(i, j) = hi (resp., b(i, j) = wi). Otherwise we set

b(i, j) = +∞.

There is a �nal di�culty that we need to address: we can not say a priori whether a

rectangle is small (and therefore should be packed in the �nal stage). To circumvent this

di�culty, we de�ne one extra knapsack k′ whose size is the total area in BOPT ′ not occupied

by the containers. The size b(i, k′) of Ri in this knapsack is the area a(Ri) = wi · hi of Ri
provided that Ri or its rotation by 90◦ is small w.r.t. the current choice of the parameters

(δh, µh, δw, µw). Otherwise b(i, k′) = +∞.

By construction, the above multiple knapsack instance admits a feasible solution that

packs all the rectangles. This immediately implies a packing of all the rectangles, excluding

the (small) ones in the extra knapsack. Those rectangles can be packed using NFDH as in

the proof of Lemma 8 (here however we must choose a rotation such that the considered

rectangle is small). Altogether we achieve:

I Theorem 10. There is a PPT ( 4
3 + ε)-approximation algorithm for strip packing with

rotations.

6 Conclusions

In this paper we obtained a PPT 4/3 + ε approximation for strip packing (with and without

rotations). Our approach re�nes and, in some sense, pushes to its limit the basic approach in

previous work by Nadiradze and Wiese [31]. Indeed, the rearrangement of rectangles inside

a box crucially exploits the fact that there are at most 2 tall rectangles packed on top of

each other in the optimal packing, hence requiring α ≥ 1/3. We believe that any further

improvement requires substantially new algorithmic ideas.

A PPT approximation scheme for strip packing is not excluded by the current inapprox-

imability results (essentially, only strong NP-hardness). Note that, like bin packing, strip

packing admits an asymptotic polynomial-time approximation scheme (APTAS), and bin

packing admits a PPT approximation scheme [22, 15]. It is an interesting open problem to

�nd a PPT approximation scheme for this problem, or to prove some stronger hardness of

approximation result in PPT.
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